Solution to 1986 Problem 22


The electromagnetic field transforms as a tensor:
\begin{align*}F^{\mu' \nu'} = \Lambda_{\lambda}^{\mu'} \Lambda_{\sigma}^{\nu'} F^{\mu \nu}\end{align*}
where F^{\mu \nu} is the field tensor
\begin{align*}F^{\mu \nu} = \left(\begin{array}{cccc}0 & E_x/c & E_y/c & E_z/c \\- E_x/c & 0 & B_z & ...
and \Lambda_{\lambda}^{\mu'} and \Lambda_{\sigma}^{\nu'} are Lorentz transformation matrices:
\begin{align*}\Lambda_{\lambda}^{\mu'} = \Lambda_{\sigma}^{\nu'} = \left(\begin{array}{cccc}\gamma & - \gamma \beta &...
for the standard case when the velocity of the primed frame with respect to the unprimed frame is in only the x direction. Therefore, answer (B) is correct.


return to the 1986 problem list

return to homepage


Please send questions or comments to X@gmail.com where X = physgre.